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Assuming a unit incident voltage wave at the plane of the short
circuit in the waveguide, the following algorithm can be used to
compute the relevant quantities defined in Fig. 3:

Vmc(o) =1. (53:)
Vref(o)/ = —1 (5b)
Iy = 0. (5¢)
Then,
+2r (I — 1
Vine® = Vine®D exp li_”_’“_f-l_)] (6a)
ref ref )‘0
= Vine® e Vi® (6b)
k2’3
I,® = ¢ — jBayex (6¢)
I,®
Ty = L® (6d)
k
=Vi® 4 ¢ (6e)
= [\® — jBaer’ (60)
Vmc(k), = %[ek, =+ Zk,:l (6g)

ref

where k = 1,2,-++ N, and ), is the guide wavelength. The generator
voltage E,, the voltage insertion loss ratio ¢; of the kth filter, and
the input reflection coefficient p are given, respectively, by

E0 = Il(N) + gN’ (7)
1\ 7,® Vi,®  V,®
h=2(=) = = 2RV ———— e (8
Ry E, 1 4 RoY5® Ey
ex’ — L@
P ey’ + I ©

DEsiGN PROCEDURE

The design procedure, summarized by the flow chart of Fig. 4,
is described as follows.

1) Synthesize individual bandpass filters to meet the required
selectivity and in-band flatness of the multiplexer specifications
[2], [4].

2) Choose initial spacings for the filters. These spacings can be
either I = k)\g;/2, or according to the rule, ly = 0, I — Ly = N\p,./2,
k = 1,2,-++,N, where )\, is the guide Wavelength at the center
frequency fo, of filter number k.

3) Compute the frequency response of the multiplexer using the
analysis algorithm described in the previous section.

4) Find j so that

p(fo,) | = max [p(fu)l. (10)
k=1,2,""",N

5) If | p(fo,) | < e (a prespecified allowable reflection coefficient),
then all reflection coeflicients are acceptable.. Print out the results
and stop; otherwise, continue to step 6).

6) Change the spacing I, of filter number ; according to the
following rule.

If |o(fs +4)]S
to I; + Al;, where

[ p(fo,) |, then set the new value of I, equal

Ao (o, iA)] an

and A, ( fo, = A) is the guide wavelength at frequency (fy, & A).

7) If the allowable number of iterations has been exceeded, stop;
otherwise, return to step 3).

The convergence of the iteration procedure to an acceptable
solution was fairly rapid in all cases tested. This can be attributed
to the fact that, although the initial choice of spacings does not
produce the desired response, it is not very far from being optimum.
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The rule for changing the spacings is similar to the procedure for
an empirical design approach. Namely, at each step, the filter
having the worst return loss is moved by an amount which will
move the position of the best return loss to its center frequency.

ExaMPLE AND DiscussioN

The above procedure has been used in the design of a 6-channel
multiplexer. The filters used are 4-pole elliptic-function-type filters
having 0.05-dB ripple and 42-MHz bandwidth. The insertion and
return losses with the initial spacings and after the application of
the optimization procedure are shown in Figs. 5 and 6, respectively.
The final result of Fig. 6 was obtained after moving every filter at
least twice (two iteration cycles).

The success of the procedure from a practical point of view
depends largely on how closely the equivalent circuit models for
the filters of Fig. 2 and the junction of [3] represent the actual
behavior of these elements over the entire frequency band of the
multiplexer. Fig. 7 compares the caleulated and measured input
reflection coefficients of a typical filter. Although a complete multi-
plexer assembly designed according to the procedure has not been
made, the close agreement of the measured characteristics of a
single filter and the computed response indicates that the present
approach should yield a satisfactory practical design.

CONCLUSION

A procedure for the computer-aided design of waveguide multi-
plexers has been described. This method is based on an analysis
algorithm for the equivalent circuit of the multiplexer. Simple rules
for the optimization of the filter spacings allow the optimum design
to be obtained in a small number of iteration steps. The filters used
in the multiplexer can be either direct-coupled (Chebychev) or
multiple-coupled (elliptic function) cavity filters.

An example of a 6-channel waveguide multiplexer for the fre-
quency band of 3.7-4.2 GHz is included.
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Microwave Circuit Optimization Employing Exact
Algebraic Partial Derivatives

GEORGE R. BRANNER

Abstract—A technique for the optimization and sensitivily analysis
of broad classes of electrical networks is illustrated. The method
utilizes the exact algebraic partial derivatives of functions with
respect to any desired independent variable. This completely auto-
mated technique has the obvious advantage that the derivatives of
any circuit response function with respect to any desired component
parameter may be obtained with no additional analytical effort on
the part of the designer. Several examples are given to illustrate
the procedure.
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I. INTRODUCTION

In recent years there has been growing interest in the application
of automated optimization techniques for network and device design
[1]. Initially, many problems were solved by employing direct
search techniques because the reliable derivative information neces-
sary in gradient methods was difficult to obtain. Bandler [27], [3]
has pointed out that there is currently considerable interest in
various methods of evaluating the partial derivatives of objective
functions and performing sensitivity analysis employing Tellegen’s
theorem [4]. Recently, considerable effort has been expended
toward the development of efficient methods of applying this tech-
nique to & broad class of electrical network problems [21-[4].

The objective of this paper is to present a reliable technique for
sensitivity analysis and gradient computation using the exact alge-
braic partial derivatives of the requisite functions. In the case of
the optimization problem, this permits the gradient vector neces-
sary for multidimensional gradient strategies to be evaluated for
any microwave circuit response function with respect to any con-
stituent parameter. One such evaluation must be performed for
each frequency (or time) increment. The method has been em-
ployed with considerable success by the author on both nonlinear
[57 and linear active networks and on medical electronics problems

[61.
II. TeE TECHNIQUE

Ezxact Partial Derivatives

It is assumed that a Fortran version of the analysis program is in
existence. The partial derivatives are obtained from a general com-
puter program specifically written for this purpose. The program
accepts as input the complete Fortran subroutine or program de-
seribing the problem being investigated preceded by a card which
specifies the independent variables of the differentiation. The output
of the program is a complete Fortran version of the original program
containing all the partial derivatives with respect to the independent
variables. This major output is actually a new deck of punched
cards which contains a copy of the original deck, all the desired
partial derivatives, and a list of numerieal codes for all variables [7].

A trivial example illustrating the simplicity of the procedure is
shown in Fig. 1. Fig. 1(a) shows a simple Fortran program for
which it is desired to obtain all partial derivatives with respect to
parameters X1 and X2. Fig. 1(b) illustrates the differentiation
.program output. The independent (WRT) variables are listed and
numbered in the order in which they appear on the WRT card.
Next, the dependent variables are numbered in the order in which
they are found in the program. The differentiated program is then
listed. Note that the differentials are given names Pxxyy. For ex-
ample, PO701 is the partial derivative of variable U, which is the
objective function in this case, with respect to variable X1.

The Optimization Procedure

A weighted least squares optimization scheme is employed to
illustrate the efficacy of the technique. The optimization scheme
actually employs a modified version of the least squares procedure
which handles certain cases where the nature of the multidimensional
contour in parameter space may preclude convergence.!

Sensitivity Computation

In the examples to be presented in Section III, the classical
sensitivity function (1) is employed:

p OR

SR = —— 1
"= o \ (1
where
R circuit response;
» a circuit parameter;

S,® the sensitivity of B to changes in the parameter p.

. ! This is accomplished by employing a procedure, similar to that given
in [8], which restricts the maximum per unit change permitted in the
parameter values.
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THETA = 6,28319*X1
THETB = 6.28319*x2
THET1 = SQRT(THETA)
THET2 = SQRT (THETB)
Y1 = COSfTHET'I)

Y2 = SIN(THET2)
U= (10.%(Y2 -¥1%%2))%%2 + (1. -Y])%*2
STOP
END
(a)
WRT VARIABLES
1 X1
2 X2

DEPENDENT VARIABLES

1 THETA
2 THETB
3 THET]
4 THET2
5 Y1
6 Y2
7 u

THETA = 6,28319*X1

PO101 = 6.28319.

THETB = 6.28319*X2

P0202 = 6.28319

THET1 = SQRT{THETA)

P0301 =

(P010T / 2. ) / SQRT(THETA)

THET2 = SORT(THETB)

P0402 = (P0202 / 2.} / SQRT(THETB)
Y1 = COS(THET1)

PO501 = 0. - SIN (THET1) * P0301
Y2 = SIN(THET2

PO602 = COS (THET2) * P0402
U= (10.%(Y2 -Y1%%2) )2+ (1. -Y1)%*2

PO70T = 200. ooo* (Y2- YI**2) * (0. - 2 * Y1* POS01) + 2 * (1.- Y

11) * (0. - P0501)

P0702 = 200.000* (Y2- Y1¥*2) * P0602
STOP

DONE

(b)

Simple example illustrating differentiator. (a) Original Fortran

Fig. 1.
program. (b) Differentiator output.

III. ExampLEs

In this section, two examples are presented which illustrate the
application of the least squares optimization procedure employing
the algebraic derivatives. The first example is a distributed network
for which optimization and sensitivity computations are performed.
The second example illustrates the application of the technique to
provide optimum performance for a capacitive coupled filter.

Ezxample 1

In several recent publications, Bandler has considered the prob-
lem of microwave transformer design employing optimization tech-
niques. Although the optimization software employed in this paper
does not include the least pth technique, good results have been
obtained for this circuit by employing an objective function of the
form described by Bandler [97]. The present approach using the
algebraic derivatives was applied for the optimization of the 2 sec-
tion iransmission line transformer having a 10:1 load to source
impedance ratio over a 100-percent bandwidth [10].

The desired VSWR specification was divided into three equal
segments over the normalized frequency range of 0.5-1.5 Hz. Using
this response specification, optimum transformers were obtained
using the different starting values employed by Bandler [10].
The number of iterations required varied between 51 and 82 depend-
ing on the parameter starting values.

The sensitivity functions were calculated from (1) using the
algebraic derivatives of the circuit VSWR with respect to character-
istic impedance and line length. A plot of these sensitivities for the
optimum transformer impedance values versus frequency is shown
in Fig. 2.

Example 2

In this example the optimization technique is employed to obtain
design values for a lossy 25-element capacitor coupled filter which
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parallel connection of L;, C;, and R;.) Fig. 4. Insertion loss.

TABLE 1

Capacitive CoupLeDp FILTER

ELEMENT VALUES FOR THE
ELEMENT INITIAL
Cy 9.
Cg 1
¢y 4,
Cpy 2.
Caq 3.
Cus 2.
Co6 3.
€ 19.
<, 26.
€y 26.
¢ 26.
€ 27.
Cq 20.

VALUE (pf) OPTIMIZED VALUE (pf)
857 2.141
277 10.850
264 3.960
028 1.810
703 3.470
736 2.730
095 2.959
g 20.359
601 26.640
577 27.130
927 26.209
528 26.720
536 20.270

Shunt resonator inductors I: through Ls were 50 nH, and shunt

resonator resistances were 5.851

k{2 each These components were

constrained during the optimization,

was to operate over a 15-percent frequency band centered around
125 MHz. The filter, which is shown in Fig. 3, was designed to have
a 0.1-dB equal-ripple response with a 4.6-dB insertion loss.

Due to filter geometry constraints and the unavailability of a
precise design technique, it was necessary to obtain the component
values from an approximate narrow-band design approach. When
these parameter values were used, a severely distorted filter response
as shown in Fig. 4 was obtained.

The optimization technique using the exact algebraic derivatives
of the least squares objective function using insertion loss was em-
ployed to find component values which would give the desired
response. Problem constraints dictated that a subset of 12 of the
total 25 elements must be held constant during the optimization
procedure. The final response which was obtained after application
of the technique is also illustrated in Fig. 4. Initial and final element
values are presented in Table 1.
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IV. CoNcLUSIONS

This paper details a computer oriented technique for network
optimization utilizing exact algebraic partial derivatives of the
response function with respect to any circuit parameters of interest.
The method is applicable to a broad class of active, nonlinear, and
distributed circuits. The method of obtaining the partial derivatives
eliminates the disadvantages inherent in the numerical estimation
of the derivatives and requires no additional analytical effort.
Several examples were presented to illustrate the efficacy of the
technique.
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Group-Delay Smoothing by Noncentral Statistics

A. UHLIR, JR.

Abstract— Automatic network analyzer group-delay measurements
are improved by simple hardware substitutions, more exact fre-
quency calculations, and a discounting of group-delay variations
that fail to persist through several settings of the reference path
length.

INTRODUCTION

Severe group-delay flatness requirements are sometimes imposed
upon microwave relay components such as band-separation filters.
Delay variations of 0.2 ns out of 75 ns must be resolved at fre-
quency intervals of about 1 MHaz.

The Hewlett-Packard 8542A general-purpose automatic network
analyzer indicates spurious delay variations much larger than the
desired tolerances, when used in its stock configuration with two-
port messurement programs such as Hewlett-Packard’s CGPS2 or
Computer Metrics’ GPM1. These programs compute group delay
from successive CW transmission measurements in accordance with
the approximate relation

A
= 736041 )

Ty

where A¢ is the phase change in degrees corresponding to a fre-
quency increment Af. Sources of inaccuracy will be discussed along
with techniques for combating them.

FREQUENCY-SET ERROR

Some of the problems are peculiar to the limited resolution of
digital systems. For example, the frequency can be set only to dis-
crete values which are spaced 2-20 KHz apart, depending upon the
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operating frequency. When the program calls for a particular fre-
quency, a phase-locked signal source is sef to the nearest discrete
frequency. A possible diserepancy of 2 KHz is 0.2 percent of a 1-MHz
frequency increment, too large to ignore. Therefore, the difference
between set frequencies must be used as the Af in (1), whereas the
stock software uses the difference between the called frequencies.

ResoLvEr ERROR

Another digital resolution problem arises in the measurement of
phase. The analog-to-digital converter used to read the transmission
coefficient in Cartesian form does not have enough bits to give accu-
rate phase differences when the frequency steps are small in com-
parison to the electrical length of the component under test. In
such a situation, some improvement can be expected from averaging
results obtained by repeating the measurement with small varia-
tions in the size of the frequency steps.

This time-consuming approach was set aside in favor of the
following procedure that also bypasses the quadrature imbalance
errors inherent in a Cartesian coordinate measurement. The analog
phase output of the 8413A phase-gain indicator is read by a preci-
sion digital voltmeter interfaced to the system computer. The
analog phase detector output is smooth and linear except at the
extremes of its range, where it becomes totally nonlinear and changes
by an amount corresponding to 360°. One or more such crossovers
usually occurs over the passband of a typical communication filter.

Since the results for some of the frequency intervals will be com-
pletely obliterated by the crossovers in a single pass over the fre-
quency band, replicate measurements are required with the cross-
overs somehow shifted to other parts of the band. This shift can be
done with the manual phase offset control on the 8413A or by alter-
ing the length of the reference signal path with the internally-
provided calibrated trombone; the latter procedure was adopted.
From the band-center frequency and the number of replications,
the computer determines and requests trombone settings that vary
the phase over a full cycle.

INFORMATION-PROCESSING RATIONALE

Next, the replicate measurements are dealt with by a simple
procedure for using a prior: knowledge. We know that changing the
setting of the trombone does not change the properties of the com-



